benym的知识笔记 benym的知识笔记
🦮首页
  • Java

    • Java-基础
    • Java-集合
    • Java-多线程与并发
    • Java-JVM
    • Java-IO
  • Python

    • Python-基础
    • Python-机器学习
  • Kafka
  • Redis
  • MySQL
  • 分布式事务
  • Spring

    • SpringIOC
    • SpringAOP
🦌设计模式
  • 剑指Offer
  • LeetCode
  • 排序算法
🐧实践
  • Rpamis

    • Utils
    • Exception
    • Security
  • 归档
  • 标签
  • 目录
🦉里程碑
🐷关于
GitHub (opens new window)

benym

惟其艰难,才更显勇毅🍂惟其笃行,才弥足珍贵
🦮首页
  • Java

    • Java-基础
    • Java-集合
    • Java-多线程与并发
    • Java-JVM
    • Java-IO
  • Python

    • Python-基础
    • Python-机器学习
  • Kafka
  • Redis
  • MySQL
  • 分布式事务
  • Spring

    • SpringIOC
    • SpringAOP
🦌设计模式
  • 剑指Offer
  • LeetCode
  • 排序算法
🐧实践
  • Rpamis

    • Utils
    • Exception
    • Security
  • 归档
  • 标签
  • 目录
🦉里程碑
🐷关于
GitHub (opens new window)
  • Python-基础

    • assert语句的运用
    • list(列表)、tuple(元组)、dict(字典)的回顾
    • Python中的Docstring
    • Python中的多态
    • Python中的集合
    • Python中的列表
    • Python中的序列以及切片的解释
    • Python中的引用和切片
    • Python中的元组
    • Python中对列表和元组的切片操作
    • Python中完整for循环的实际运用
    • Python中字典(key-value)
    • Python中字符串的一些方法回顾(拆分与合并)
    • Python中字符串的一些方法回顾(切片回顾)
    • Python中字符串的一些方法回顾(文本对齐、去除空白)
    • Python中字符串的一些方法回顾
    • Python中字符串的一些基本操作
    • 多种方法快速交换两个变量的值
    • 利用Python进行文件的自动备份
    • 利用Python进行文件的自动备份(第二版)
    • 利用Python进行文件的自动备份(第三版和第四版)
    • 列表推导
    • 在函数中接受元组与字典
    • 装饰器
    • finally异常处理
    • Python的__name__ = '__main__' 的作用
    • Python的pickle模块
    • Python对象的实例化
    • Python日志模块
    • Python中的__new__方法的重写
    • Python中的lambda函数
    • Python中的静态方法、实例方法、类方法的区别
    • Python中的正则表达式
    • Python中的正则表达式match和search
    • Python中面向对象比较简单的内部函数
    • with open异常处理
    • 单例设计模式
    • 继承的运用
    • 简单的异常处理
    • 类变量与对象变量
    • 输入输出——简单的回文判断
    • 输入输出——回文字串的判断(加强版)
    • 文件操作
    • 用户自己引发的异常处理
    • 正则表达式检索与替换
    • 正则表达式中的compile函数
    • 正则表达式中的compile函数(二)
  • Python-机器学习

    • Numpy库的首次使用
    • kNN(k-近邻算法)
    • kNN识别手写图像
    • LogisticRegression(逻辑回归)
    • Ndarray对象
    • Numpy中的数组维度
    • Numpy中花式索引和shape用法
    • turtle绘图库
    • 第一个使用Tensorflow的程序
      • 代码
      • 运行结果
    • 将下载下来的MNIST手写数字数据集转化成为图片
    • Tensorflow交互式使用
    • 使用k-近邻算法改进约会网站的配对效果
    • Numpy数据类型和arange方法、astype方法的使用
    • 一些TensorFlow的基本操作
  • Python
  • Python-机器学习
benym
2018-08-24
目录

第一个使用Tensorflow的程序

# 构建图

构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如 常量 (Constant). 源 op 的输出被传递给其它 op 做运算.

Python 库中, op 构造器的返回值代表被构造出的 op 的输出, 这些返回值可以传递给其它 op 构造器作为输入.

TensorFlow Python 库有一个默认图 (default graph), op 构造器可以为其增加节点

默认图现在有三个节点, 两个constant()op, 和一个matmul()op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的 结果, 你必须在会话里启动这个图.

# 在一个会话中启动图

构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数, 会话构造器将启动默认图.

# 代码

import tensorflow as tf

# op称为图的节点
# 创建一个常量op,产生一个1x2矩阵,这个op被作为一个节点
# 加到默认图中
# 构造器的返回值代表该常量op的返回值
matrix1 = tf.constant([[3., 3.]])

# 创建另一个常量op,产生一个 2x1矩阵
matrix2 = tf.constant([[2.], [2.]])

# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
'''
默认图现在有三个节点, 两个 constant() op, 和一个matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的 结果, 你必须在会话里启动这个图.
'''
product = tf.matmul(matrix1, matrix2)

# 启动默认图.
sess = tf.Session()

# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数.
# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
#
# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
result = sess.run(product)
print(result)
# ==> [[ 12.]]

# 任务完成, 关闭会话.
sess.close()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

# 运行结果

[[12.]]
1
1
编辑 (opens new window)
#Tensorflow#Python#机器学习
上次更新: 2022/12/31, 16:52:27
turtle绘图库
将下载下来的MNIST手写数字数据集转化成为图片

← turtle绘图库 将下载下来的MNIST手写数字数据集转化成为图片→

最近更新
01
SpringCache基本配置类
05-16
02
DSTransactional与Transactional事务混用死锁场景分析
03-04
03
Rpamis-security-原理解析
12-13
更多文章>
Theme by Vdoing | Copyright © 2018-2024 benym | MIT License
 |   |   | 
渝ICP备18012574号 | 渝公网安备50010902502537号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式