LeetCode-145-二叉树的后序遍历
# LeetCode-145-二叉树的后序遍历
给定一个二叉树,返回它的 后序 遍历。
相关链接:
- LeetCode-144-二叉树的前序遍历 (opens new window)
- LeetCode-94-二叉树的中序遍历 (opens new window)
- LeetCode-145-二叉树的后序遍历 (opens new window)
示例 1:
输入: [1,null,2,3]
1
\
2
/
3
输出: [3,2,1]
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# 解题思路
二叉树的遍历问题都有2种解法,一种是递归,一种是迭代
递归:开启左子树递归,开启右子树递归,添加根节点
迭代:后序遍历的方式是左右根,前序遍历是根左右,如果用Stack来实现根左右,那么左边先加入就会后出,右边后加入会先出,于是看似是add(left)之后add(right),实际上会先访问到right再访问left,从而实现前序遍历得到根右左,即后序遍历的倒序,之后将列表倒序就是后序遍历的结果
迭代模拟:严格按照后序遍历的左右根访问,代码整体与中序遍历很相似,但需要注意其中两个点。
第一,stack.peek()只是取出栈顶元素,要和stack.pop()弹出栈顶元素区分开来;
第二,变量last用于保存当前栈顶所弹出的元素,判断 curr.right == last 是为了避免重复访问同一个元素而陷入死循环当中
# Java代码(递归)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
List<Integer> res = new ArrayList<>();
public List<Integer> postorderTraversal(TreeNode root) {
if(root==null) return res;
helper(root);
return res;
}
public void helper(TreeNode root){
if(root==null) return;
helper(root.left);
helper(root.right);
res.add(root.val);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Java代码(迭代Stack)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
LinkedList<Integer> res = new LinkedList<>();
Stack<TreeNode> stack = new Stack<>(); // Stack实现根右左
if(root==null) return res;
stack.add(root);
while(!stack.isEmpty()){
TreeNode temp = stack.pop();
res.addFirst(temp.val); // 添加到头部,实现倒序
if(temp.left!=null)
stack.add(temp.left);
if(temp.right!=null)
stack.add(temp.right);
}
return res;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Java代码(迭代模拟)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new LinkedList<>();
Stack<TreeNode> stack = new Stack<>();
TreeNode curr = root;
TreeNode last = null;
while (curr != null || !stack.isEmpty()) {
while (curr != null) {
stack.push(curr);
curr = curr.left;
}
curr = stack.peek();
if (curr.right == null || curr.right == last) {
res.add(curr.val);
stack.pop();
last = curr;
curr = null;
} else {
curr = curr.right;
}
}
return res;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
编辑 (opens new window)
上次更新: 2022/11/18, 11:15:10
- 01
- SpringCache基本配置类05-16
- 03
- Rpamis-security-原理解析12-13